Probing Heteroatomic Dopant-Activity Synergy over Co3O4/Doped Carbon Nanotube Electrocatalysts for Oxygen Reduction Reaction

2020 
Understanding and predicting how heteroatomic dopants of carbon nanotubes (CNTs)-based catalysts alter their catalytic performance at nanoscale is essential to design superior electrocatalysts for oxygen reduction reaction (ORR). This report describes findings of an investigation of the heteroatomic dopant-activity relationship for Co3O4/doped CNTs catalysts with different heteroatoms including N, O, and P atoms in ORR. By using an array of techniques to probe the structure and elementary valence of the catalysts, the incorporation of the Co3O4 nanoparticles can introduce defects into the doped CNTs, especially the N-CNTs, which should contribute to the generation of active sites. The Co3O4/N-CNTs are shown to exhibit both the highest ORR activity and stability compared with Co3O4/O-CNTs, Co3O4/P-CNTs, and Co3O4/CNTs, manifesting the synergistic correlation of Co3O4 nanoparticles, heteroatoms, and CNTs. This kind of synergy is assessed by density functional theory calculations based on the electronic prop...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    14
    Citations
    NaN
    KQI
    []