Giant magnetoresistance and topological Hall effect in the EuGa4 antiferromagnet.
2021
We report on systematic temperature- and magnetic field-dependent studies of the EuGa$_4$ binary compound, which crystallizes in a centrosymmetric tetragonal BaAl$_4$-type structure with space group $I4/mmm$. The electronic properties of EuGa$_4$ single crystals, with an antiferromagnetic (AFM) transition at $T_\mathrm{N} \sim 16.4$ K, were characterized via electrical resistivity and magnetization measurements. A giant nonsaturating magnetoresistance was observed at low temperatures, reaching $\sim 7 \times 10^4$ % at 2 K in a magnetic field of 9 T. In the AFM state, EuGa$_4$ undergoes a series of metamagnetic transitions in an applied magnetic field, clearly manifested in its field-dependent electrical resistivity. Below $T_\mathrm{N}$, in the $\sim$4-7 T field range, we observe also a clear hump-like anomaly in the Hall resistivity which is part of the anomalous Hall resistivity. We attribute such a hump-like feature to the topological Hall effect, usually occurring in noncentrosymmetric materials known to host topological spin textures (as e.g., magnetic skyrmions). Therefore, the family of materials with a tetragonal BaAl$_4$-type structure, to which EuGa$_4$ and EuAl$_4$ belong, seems to comprise suitable candidates on which one can study the interplay among correlated-electron phenomena (such as charge-density wave or exotic magnetism) with topological spin textures and topologically nontrivial bands.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
0
References
0
Citations
NaN
KQI