The degradation of Vitamin C by reactive oxygen species

2015 
Vitamin C (ascorbate and dehydroascorbic acid) is vital for plants and found throughout the plant cell including in the apoplast. The structure of ascorbate was determined eighty years ago; however, many of its degradation pathways remain unclear. Numerous degradation products of ascorbate have been reported to occur in the apoplast but many still remain unidentified [1,2] . Ascorbate is well known as an antioxidant, and acts to quench reactive oxygen species (ROS), such as hydrogen peroxide and ozone in the plant apoplast. The immediate oxidation product of ascorbate is dehydroascorbic acid (DHA), which may be quickly hydrolysed to diketogulonic acid (DKG). The further reactions of radiolabelled and non-radiolabelled DHA and DKG with various ROS have been investigated. The resulting oxidation products were separated by high-voltage paper electrophoresis. Differences were observed in the products formed from the various ROS, allowing a unique fingerprint of oxidation products to be described for each ROS. Equally, different compounds were produced depending on the starting substrate; for example cyclic oxalyl threonate was only observed in the reactions of DHA and not DKG. Vitamin C is also a vital component of the human diet, and most dietary ascorbate comes from plants such as salads. The degradation of ascorbate during post-harvest processing and storage of salad leaves has been investigated. Studies are being conducted to determine the presence of ascorbate oxidation products within salad leaves. We thank the UK BBSRC and Vitacress Salads Ltd for funding.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    2
    References
    2
    Citations
    NaN
    KQI
    []