Antisense oligonucleotides targeting UBE3A-ATS restore expression of UBE3A by relieving transcriptional interference

2021 
Abstract Angelman syndrome (AS) is a rare neurodevelopmental disorder caused by loss of function of the maternally inherited UBE3A allele. In neurons, the paternal allele of UBE3A is silenced in cis by the long noncoding RNA, UBE3A-ATS. Unsilencing paternal UBE3A by reducing UBE3A-ATS is a promising therapeutic approach for the treatment of AS. Here we show that targeted cleavage of UBE3A-ATS using antisense oligonucleotides (ASOs) restores UBE3A and rescues electrophysiological phenotypes in human AS neurons. We demonstrate that cleavage of UBE3A-ATS results in termination of its transcription by displacement of RNA Polymerase II. Reduced transcription of UBE3A-ATS allows transcription of UBE3A to proceed to completion, providing definitive evidence for the transcriptional interference model of paternal UBE3A silencing. These insights into the mechanism by which ASOs restore UBE3A inform the future development of nucleotide-based approaches for the treatment of AS, including alternative strategies for cleaving UBE3A-ATS that can be developed for long-term restoration of UBE3A function.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    1
    Citations
    NaN
    KQI
    []