Dependence of Site Occupancy and Structural and Electrical Properties on Successive Replacement of Co by Zn in CoFe2O4

2014 
The crystal structure and cation distribution at particular sites in the crystal lattice play the primary role in determining the properties of nanocrystalline transition-metal oxide materials. Nanocrystalline ferrite particles of Co1−xZnx Fe2O4 with x varying from 0.0 to 1.0 were synthesized by a coprecipitation method. Samples synthesized at the reaction temperature of 70°C were sintered at 600°C for 3 h. The face-centered cubic (FCC) spinel structure of the synthesized particles was confirmed by x-ray diffraction patterns. The grain sizes calculated from the most intense peak (311) using the Scherrer equation were found to be in the range from 10 nm to 35 nm. Extended x-ray absorption fine-structure and x-ray absorption near-edge structure spectroscopy is a powerful tool for structural study of metal oxide materials. These techniques are element specific and sensitive to the local structure. These techniques were used at Fe, Co, and Zn K-edges to investigate the cation distribution in the crystal structure. The dependence of the electrical transport properties on the shift in the crystal structure due to successive replacement of Co by Zn in CoFe2O4 was examined. Direct-current (dc) electrical conduction measurements were carried out as a function of temperature from 313 K to 700 K. Activation energy values indicated the polaron hopping conduction mechanism. The alternating-current (ac) electrical transport properties were studied by measuring the dielectric constant as a function of frequency. A regular shift␣in the electrical properties was observed depending upon the cation distribution.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    10
    Citations
    NaN
    KQI
    []