A Universal Approach to Analyzing Transmission Electron Microscopy with ImageJ

2021 
2 ABSTRACT Transmission electron microscopy (TEM) is a scientific research standard for producing nanometer-resolution ultrastructural images of subcellular components within cells and tissues. Mitochondria, endoplasmic reticulum (ER), lysosomes, and autophagosomes are organelles of particular interest to those investigating metabolic disorders. However, there is no clear consensus amongst regarding the best methods for quantifying the features of organelles in TEM images. In this protocol, we propose a standardized approach to accurately measure the morphology of these important subcellular structures using the free program ImageJ, developed by the National Institutes of Health (NIH). Specifically, we detail procedures for obtaining mitochondrial length, width, area, and circularity, in addition to assessing cristae morphology. We further provide methods for measuring interactions between the mitochondria and ER and measuring the length and width of lysosomes and autophagosomes. This standardized method can be used to quantify key features of organelle morphology, allowing investigators to produce accurate and reproducible measurements of organelle structures in their experimental samples. 1 SUMMARY We discuss a standardized method for measuring and quantifying organelle features using transmission electron microscopy and accessing for interactions between subcellular structures; organelles of focus include mitochondria, endoplasmic reticulum, lysosomes, and autophagosomes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    2
    Citations
    NaN
    KQI
    []