Low energy mammogram obtained in contrast-enhanced digital mammography (CEDM) is comparable to routine full-field digital mammography (FFDM)

2014 
Abstract Purpose Contrast enhanced digital mammography (CEDM) uses low energy and high energy exposures to produce a subtracted contrast image. It is currently performed with a standard full-field digital mammogram (FFDM). The purpose is to determine if the low energy image performed after intravenous iodine injection can replace the standard FFDM. Methods And Materials: In an IRB approved HIPAA compatible study, low-energy CEDM images of 170 breasts in 88 women (ages 26–75; mean 50.3) undergoing evaluation for elevated risk or newly diagnosed breast cancer were compared to standard digital mammograms performed within 6 months. Technical parameters including posterior nipple line (PNL) distance, compression thickness, and compression force on the MLO projection were compared. Mammographic findings were compared qualitatively and quantitatively. Mixed linear regression using generalized estimating equation (GEE) method was performed. Intraclass correlation coefficients (ICC) with 95% confidence interval (95%CI) were estimated to assess agreement. Results No statistical difference was found in the technical parameters compression thickness, PNL distance, compression force ( p -values: 0.767, 0.947, 0.089). No difference was found in the measured size of mammographic findings ( p -values 0.982–0.988). Grouped calcifications had a mean size/extent of 2.1 cm (SD 0.6) in the low-energy contrast images, and a mean size/extent of 2.2 cm (SD 0.6) in the standard digital mammogram images. Masses had a mean size of 1.8 cm (SD 0.2) in both groups. Calcifications were equally visible on both CEDM and FFDM. Conclusion Low energy CEDM images are equivalent to standard FFDM despite the presence of intravenous iodinated contrast. Low energy CEDM images may be used for interpretation in place of the FFDM, thereby reducing patient dose.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    10
    References
    79
    Citations
    NaN
    KQI
    []