CHD4 conceals aberrant CTCF-binding sites at TAD interiors by regulating chromatin accessibility in mESCs

2021 
CTCF plays a critical role in the 3D chromatin organization by determining the TAD borders. Although CTCF primarily binds at the TAD borders, there also exist putative CTCF-binding sites within TADs, which are spread throughout the genome by retrotransposition. However, the detailed mechanism responsible for masking these putative CTCF-binding sites remains elusive. Here, we show that the ATP-dependent chromatin remodeler, CHD4, regulates chromatin accessibility to conceal aberrant CTCF-binding sites embedded in H3K9me3-enriched heterochromatic B2 SINEs in mouse embryonic stem cells (mESCs). Upon CHD4 depletion, these aberrant CTCF-binding sites become accessible, and aberrant CTCF recruitment occurs at the TAD interiors, resulting in disorganization of the local TADs. Furthermore, RNA-binding intrinsically disordered domains of CHD4 is required to prevent the aberrant CTCF bindings. Lastly, CHD4 is required for the repression of B2 SINE transcripts. These results highlight the CHD4-mediated mechanism that safeguards the appropriate CTCF bindings and associated TAD organizations in mESCs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    87
    References
    0
    Citations
    NaN
    KQI
    []