Modeling of Technological Processes for a Rectification Plant in Second-Generation Bioethanol Production

2021 
The article deals with the recent developments in the fuel industry, considering the permanent increasing requirements for fuel quality and environmental safety. The work aims to study various technological modes at the rectification unit to produce fuel bioethanol from lignocellulosic biomass. The main goals are to solve applied scientific problems of rational designing and technological optimization to obtain boundaries of energy consumption to ensure the quality of bioethanol sufficient for a consumer. Recent approaches for numerical simulation of chemical technological processes were applied to study the operating processes and optimize technological parameters. The plant model was designed from various modules that allow us to simulate technological processes efficiently and accurately for all the primary units of the rectification equipment. The methodology based on the activity coefficient UNIFAC model of phase equilibrium was applied. As a result, a mixture with 74% of bioethanol 9% of impurities was obtained in the brew column. In the epuration column, a mixture of 46% bioethanol and 2.2% of impurities was obtained in bottoms. Finally, in the alcohol column, the mass fraction of distillate of 96.9% and impurities of 2.7% were reached. The numerical simulation results can be applied in recent fuel technologies and designing the corresponding biofuel plants.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    2
    Citations
    NaN
    KQI
    []