The effect of interfacial diffusion on the electrical resistivity of magnetron sputtered Al–Fe–Sn alloy thin film

2016 
Abstract The effect of interfacial diffusion in post-deposition annealing on the electrical resistivity of AlFeSn alloy films was investigated for the first time. The microstructure of the film before and after annealing was characterized by Atomic Force Microscope and Transmission Electron Microscope. The temperature dependence of resistivity in the range from 30 to 300 K suggests the presence of electron localization in both as-deposited and annealed films. The electron localization in the as-deposited film could be attributed to structural discontinuity. However, the electron localization in the annealed samples could probably be attributed to the diffusion of Si atoms into the film. An electrical resistivity as low as 1.43 μΩ cm was achieved for a 60 nm thick sample, which is considerably lower than predicted and previously reported. We propose the supreme conductivity of the annealed films could be partly due to the contribution from the electron localization. Our results provide new insight into developing highly conductive metallic materials.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    0
    Citations
    NaN
    KQI
    []