Selective extraction of uranium from seawater with biofouling-resistant polymeric peptide
2021
Nuclear power could continue to be a reliable and carbon-free energy source at least from a near-term perspective. In addition to the safety issues, another risk that may threaten the sustainability of this technology is the uranium supply disruption. As opposed to the land-based deposits, the ocean contains 1,000 times more uranium reserves and provides a more abundant resource for uranium. However, due to the very low concentration and presence of many other metal ions as well as the accumulation of microorganisms, the development of uranium extraction technology faces enormous challenges. Here we report a bifunctional polymeric peptide hydrogel that shows not only strong affinity to and selectivity for uranium in seawater but also remarkable resistance against biofouling. Detailed characterizations reveal that the amino acid in this peptide material serves as the binding ligand, and uranyl is exclusively bound to the oxygen atoms. Benefiting from its broad-spectrum antimicrobial activity, the present polymeric adsorbent can inhibit the growth of approximately 99% of marine microorganisms. Measurements in natural seawater show that this peptide material delivers an impressive extraction capacity of 7.12 mg g−1 and can be reused. This work opens a new direction for the design of low-cost and sustainable materials for obtaining nuclear fuel. The oceans contain 1,000 times more uranium than terrestrial resources, which could contribute to the sustainability of nuclear power. Here the authors report a polymeric adsorbent that can capture uranium from seawater selectively with an extraction capacity of 7.12 mg g–1. It is even resistant against biofouling and can be reused.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
49
References
15
Citations
NaN
KQI