Experimental Assessment of Friction Coefficient in Deep Drawing and Its Verification by Numerical Simulation

2021 
The friction coefficient in the simulation of stamping processes should be defined. Modern simulation software allows its definition as constant or its dependence on pressure or temperature. It is also useful in stamping processes to define different values in different regions, as it often reflects the nature of deformation process. This article deals with the regression and analytical models commonly used to determine the friction coefficients in specified areas of the stamping process. Analytical models were verified by an experimental strip drawing test under the same contact conditions. Steel sheets for the automotive industry were used in experiments and simulations—extra deep drawing quality DC 05 and austenitic stainless steel AISI 304. Friction coefficients were also evaluated when the cup test was performed. A regression model of drawing to the blankholding force was applied to the results. Conformity of friction coefficients when measured by cup tests and strip tests was confirmed. The values of the friction coefficient reached from the experiment were applied in FEM simulation software.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    3
    Citations
    NaN
    KQI
    []