Engineering the Phases and Heterostructures of Ultrathin Hybrid Perovskite Nanosheets.

2020 
Low-dimensional perovskites have gained increasing attention recently, and engineering their material phases, structural patterning and interfacial properties is crucial for future perovskite-based applications. Here a phase and heterostructure engineering on ultrathin perovskites, through the reversible cation exchange of hybrid perovskites and efficient surface functionalization of low-dimensional materials, is demonstrated. Using PbI2 as precursor and template, perovskite nanosheets of varying thickness and hexagonal shape on diverse substrates is obtained. Multiple phases, such as PbI2 , MAPbI3 and FAPbI3 , can be flexibly designed and transformed as a single nanosheet. A perovskite nanosheet can be patterned using masks made of 2D materials, fabricating lateral heterostructures of perovskite and PbI2 . Perovskite-based vertical heterostructures show strong interfacial coupling with 2D materials. As a demonstration, monolayer MoS2 /MAPbI3 stacks give a type-II heterojunction. The ability to combine the optically efficient perovskites with versatile 2D materials creates possibilities for new designs and functionalities.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    2
    Citations
    NaN
    KQI
    []