One-Pot Synthesis of Multifunctional Carbon-Based Nanoparticle-supported Dispersed Cu2+ Disrupts Redox Homeostasis to Enhance CDT

2021 
In chemodynamic therapy (CDT), the levels of reactive oxygen species (ROS) production plays an important role for evaluating the therapeutic efficacy. However, the high levels of glutathione (GSH) in tumor cells consume the ROS, directly reducing the therapeutic efficiency. Herein, we synthesized carbon-based nanoparticle (Cu-cys CBNPs) using one-pot strategy, which consume GSH via redox reactions to produce Cu+ that catalyze H2O2 to produce ·OH, thus the ROS level was observably increased through this synergistic effect. In vivo experiments further revealed that Cu-cys CBNPs could effectively inhibit tumor growth. Additionally, Cu-cys CBNPs can affect the activity of some protein sulfhydryl groups in cells, which was assessed by rdTOP-ABPP assay. In general, this study not only provides a potential CDT drug, but also provides a strategy for one-pot synthesis of multifunctional nanomaterials.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []