In-situ synthesis of Fe, N, S co-doped graphene-like nanosheets around carbon nanoparticles with dual-nitrogen-source as efficient electrocatalyst for oxygen reduction reaction

2020 
Abstract Iron, nitrogen, sulfur co-doped Fe/N/C catalyst (poly-AT/Me–Fe/N/C) with the structure of graphene-like nanosheets around carbon nanoparticles were successfully synthesized for oxygen reduction reaction (ORR). 2-Aminothiazole and melamine were utilized as the dual-nitrogen-source. The results showed that 2-Aminothiazole, as the nitrogen and sulfur source, contributed to in-situ synthesizing graphene-like nanosheets around KJ-600 carbon nanoparticles with high specific surface area (1098 m2/g). Proper method to introduce melamine during the synthesis could increase the content of pyridinic-N and Fe-Nx moieties in the catalyst without changing the morphology. Due to the high surface area and high content of pyridinic-N and Fe-Nx moieties, the obtained poly-AT/Me–Fe/N/C catalyst exhibited high electrochemical activity and stability with the half-wave potential of 0.84 V (RHE) in 0.1 M NaOH solution, which is merely 17 mV lower than commercial Pt/C. The electron transfer number was 3.83, indicating a nearly 4e− transfer for the ORR with low HO2− yield.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    2
    Citations
    NaN
    KQI
    []