Dynamics of a globular protein adsorbed to liposomal nanoparticles.
2014
A solution-state NMR method is proposed to investigate the dynamics of proteins that undergo reversible association with nanoparticles (NPs). We applied the recently developed dark-state exchange saturation transfer experiment to obtain residue-level dynamic information on a NP-adsorbed protein in the form of transverse spin relaxation rates, R2bound. Based on dynamic light scattering, fluorescence, circular dichroism, and NMR spectroscopy data, we show that the test protein, human liver fatty acid binding protein, interacts reversibly and peripherally with liposomal NPs without experiencing significant structural changes. The significant but modest saturation transfer from the bound state observed at 14.1 and 23.5 T static magnetic fields, and the small determined R2bound values were consistent with a largely unrestricted global motion at the lipid surface. Amino acid residues displaying faster spin relaxation mapped to a region that could represent the epitope of interaction with an extended phospholipi...
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
36
References
21
Citations
NaN
KQI