Self-training for Brain Tumour Segmentation with Uncertainty Estimation and Biophysics-Guided Survival Prediction.

2020 
Gliomas are among the most common types of malignant brain tumours in adults. Given the intrinsic heterogeneity of gliomas, the multi-parametric magnetic resonance imaging (mpMRI) is the most effective technique for characterising gliomas and their sub-regions. Accurate segmentation of the tumour sub-regions on mpMRI is of clinical significance, which provides valuable information for treatment planning and survival prediction. Thanks to the recent developments on deep learning, the accuracy of automated medical image segmentation has improved significantly. In this paper, we leverage the widely used attention and self-training techniques to conduct reliable brain tumour segmentation and uncertainty estimation. Based on the segmentation result, we present a biophysics-guided prognostic model for the prediction of overall survival. Our method of uncertainty estimation has won the second place of the MICCAI 2020 BraTS Challenge.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    0
    Citations
    NaN
    KQI
    []