Dielectric Screening of Excitons and Trions in Single-Layer MoS2

2014 
Photoluminescence (PL) properties of single-layer MoS2 are indicated to have strong correlations with the surrounding dielectric environment. Blue shifts of up to 40 meV of exciton or trion PL peaks were observed as a function of the dielectric constant of the environment. These results can be explained by the dielectric screening effect of the Coulomb potential; based on this, a scaling relationship was developed with the extracted electronic band gap and exciton and trion binding energies in good agreement with theoretical estimations. It was also observed that the trion/exciton intensity ratio can be tuned by at least 1 order of magnitude with different dielectric environments. Our findings are helpful to better understand the tightly bound exciton properties in strongly quantum-confined systems and provide a simple approach to the selective and separate generation of excitons or trions with potential applications in excitonic interconnects and valleytronics.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    74
    References
    410
    Citations
    NaN
    KQI
    []