Distal Enhancer Elements in ASXL1-Mutant Chronic Myelomonocytic Leukemia

2019 
Introduction: Additional Sex Combs-Like 1 (ASXL1) is a chromatin modifier frequently affected by truncating mutations in myeloid malignancies. These mutations are associated with poor survival outcomes and increased rates of acute leukemic transformation. In chronic myelomonocytic leukemia (CMML), ASXL1 mutations are thought to affect transcriptional activity mainly by modifying histone marks, however additional epigenomic mechanisms have not been fully explored. We interrogated the epigenome of patients with ASXL1-mutant (MT) and -wildtype (WT) CMML using a multiomics approach to define cis-regulatory elements (CREs) such as distal enhancers (DEs). Methods: Bone marrow mononuclear cells from patients with CMML were subjected to targeted NGS of DNA, whole transcriptome shotgun sequencing (RNA-seq), immunoprecipitation (IP) of DNA (hydroxy-)methyl residues (DIP-seq), IP of the histone modifications H3K4me1, H3K4me3, and H3K27me3 (ChIP-seq), and DNA transposase accessibility studies (ATAC-seq). After quality control all samples were sequenced on an Illumina HiSeq 4000 before further processing and data analysis. Global assessments of DNA (hydroxy-)methylation, DNA accessibility, and histone modifications between ASXL1 MT and WT CMML were performed. The samples in the two groups were treated as biological replicates and subjected to a consensus peak calling strategy requiring an overlap of at least 30% between samples and an adjusted p-value Results: Sixteen WHO-defined CMML patients were included, median age 69 years (48 - 77), 63% male; of which 8 patients (50%, all truncating frame shift mutations) were ASXL1 MT and 8 (50%) WT. The burden and spectrum of co-mutations was similar between ASXL1 WT and MT CMML (21 versus 23 per group; p = 0.684; heatmap). There was a predominant up-regulation of gene expression in ASXL1 MT CMML: 707 genes up- and 124 down-regulated (volcano plot, FDR 40 for all candidates). Conclusions: Using a multiomics approach based on H3K4me1, 5hmC, and ATAC data we identified potential CREs in ASXL1 MT CMML and characterized potential DEs using publicly available annotation data. Specific DEs were associated with up-regulated genes serving as a possible explanation for the observed transcriptional activity, shedding further light on the adverse prognostic impact associated with ASXL1 mutations. Download : Download high-res image (1MB) Download : Download full-size image Figure 1 . Disclosures Patnaik: Stem Line Pharmaceuticals.: Membership on an entity's Board of Directors or advisory committees.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []