Two tandem mechanisms control bimodal expression of the flagellar genes in Salmonella enterica.
2020
Flagellar gene expression is bimodal in Salmonella enterica Under certain growth conditions, some cells express the flagellar genes whereas others do not. This results in mixed populations of motile and non-motile cells. In the present study, we found that two independent mechanisms control bimodal expression of the flagellar genes. One was previously found to result from a double negative-feedback loop involving the flagellar regulators RflP and FliZ. This feedback loop governs bimodal expression of class 2 genes. In this work, a second mechanism was found to govern bimodal expression of class 3 genes. In particular, class 3 gene expression is still bimodal even when class 2 gene expression is not. Using a combination of experimental and modeling approaches, we found that class 3 bimodalilty results from the sigma(28)-FlgM developmental checkpoint.IMPORTANCE Many bacterial use flagella to swim in liquids and swarm over surface. In Salmonella enterica, over fifty genes are required to assemble flagella. The expression of these genes is tightly regulated. Previous studies have found that flagella gene expression is bimodal in S. enterica, which means that only a fraction of cells express flagellar genes and are motile. In the present study, we found that two separate mechanisms induce this bimodal response. One mechanism, which was previously identified, tunes the fraction of motile cells in response to nutrients. The other results from a developmental checkpoint that couples flagellar gene expression to flagellar assembly. Collectively, these results further our understanding of how flagellar gene expression is regulated in S. enterica.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
47
References
3
Citations
NaN
KQI