Novel Simvastatin-Loaded Nanoparticles Based on Cholic Acid-Core Star-Shaped PLGA for Breast Cancer Treatment.

2015 
Abstract A novel nanocarrier system of cholic acid (CA) core, star-shaped polymer consisting of poly(D,L-lactide-co-glycolide) (PLGA) was developed for sustained and controlled delivery of simvastatin for chemotherapy of breast adenocarcinoma. The star-shaped polymer CA-PLGA with three branch arms was synthesized successfully through the core-first approach. The simvastatin-loaded star-shaped CA-PLGA nanoparticles were prepared through a modified nanoprecipitation method. The data showed that the fluorescence star-shaped CA-PLGA nanoparticles could be internalized into MDA-MB-231 and MDA-MB-468 human breast cancer cells. The simvastatin-loaded star-shaped CA-PLGA nanoparticles achieved significantly higher level of cytotoxicity than pristine simvastatin and simvastatin-loaded linear PLGA nanoparticles. Moreover, the expression of the cell cycle protein cyclin D1 was dramatically inhibited by simvastatin in both cells, with simvastatin-loaded star-shaped CA-PLGA nanoparticles having the greatest effect. MDA-MB-231 xenograft tumor model on BALB/c nude mice showed that simvastatin-loaded star-shaped CA-PLGA nanoformulations could effectively inhibit the growth of tumor over a longer period of time than pristine simvastatin and simvastatin-loaded linear PLGA nanoformulations at the same dose. In agreement with these, the nuclear expression of proliferation marker Ki-67 in simvastatin-loaded star-shaped CA-PLGA nanoparticles group was reduced to a most extent among four groups through tumor frozen section immunohistochemistry. In conclusion, the star-shaped CA-PLGA polymers could serve as a novel polymeric nanocarrier for breast cancer chemotherapy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    22
    Citations
    NaN
    KQI
    []