Exploring Function Call Graph Vectorization and File Statistical Features in Malicious PE File Classification

2020 
Over the last few years, the malware propagation on PC platforms, especially on Windows OS has been even severe. For the purpose of resisting a large scale of malware variants, machine learning (ML) classifiers for malicious Portable Executable (PE) files have been proposed to achieve automated classification. Recently, function call graph (FCG) vectorization (FCGV) representation was explored as the input feature to achieve higher ML classification accuracy, but FCGV representation loses some critical features of PE files due to the hash technique. This paper aims to further improve the classification accuracy of FCGV-based ML model by applying both graph and non-graph features. We propose an FCGV-SF based Random Forest classification model, which applies both FCGV features (graph features) and statistical features (SF, non-graph features) extracted from disassembled PE files. Six types of effective non-graph features are chosen for our integrated vector, namely, metadata, symbol, operation code, register, section and data definition. We evaluate our model on a dataset provided by Microsoft hosted at Kaggle, and the experimental results indicate that the classification accuracy increases from 0.9851 to 0.9957 compared with the existing model based on FCGV only.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    1
    Citations
    NaN
    KQI
    []