Automated determination of tin by hydride generation using in situ trapping on stable coatings in graphite furnace atomic absorption spectrometry

1995 
Abstract Conditions have been studied for the determination of Sn by coupling of hydride generation and graphite furnace atomic absorption spectrometry. Sequestering and in situ concentration of Sn hydride in the graphite furnace requires just a single application of a long-term stable trapping reagent for automated analyses. In a systematic study it is shown that effective trapping of stannane is possible on graphite tubes or platforms coated with a carbide-forming element such as Zr, Nb, Ta, or W at trapping temperatures of 500 to 600°C. Trapping temperatures should not be higher than 600°C (the “critical temperature”) because otherwise at temperatures higher than 700°C errors in absorbance values could occur by an adsorptive “carry-over effect”. Signal stability and reproducibility are tested over more than 400 complete trapping and atomization cycles, and a precision of 2% is observed. Narrow peaks are obtained for all coatings except for Nb- and Ta-coated platforms where double peaks occur. Ir- or Pd/Ir-coated surfaces allow trapping of stannane at lower temperatures but the signal stability (especially in the case of Pd/Ir coating) is lower than with the carbide-forming element coatings. The highest sensitivity is found for Zr- and W-coated tubes with a characteristic mass of about 17 and 20 pg, respectively, and the calibration curves are linear up to 2 ng Sn on Zr-treated tubes (peak height) and 4 ng on Zr-coated platforms (integrated absorbance) using the 286.3 nm line. The detection limit is 25 pg for a 1 ml sample volume, and the reagent blank is still significant with the purest available chemicals. The method is tested by determination of Sn in low alloy steel samples.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    40
    Citations
    NaN
    KQI
    []