Self-nanoemulsifying drug delivery system to improve transcorneal permeability of voriconazole: in-vivo studies.

2020 
OBJECTIVE: This study investigates the effectiveness of self-nanoemulsifying drug delivery system (SNEDDS) in improving voriconazole transcorneal permeability. METHODS: Voriconazole-SNEDDS was prepared with isopropyl myristate, PEG 400, Tween 80((R)) and Span 80((R)) and was subjected for physicochemical characterization after reconstitution with NaCl 0.9% (1/9; v/v). In-vitro antifungal activity was assessed and compared with the marketed formulation. In-vivo studies, namely ocular irritation test via modified Draize test and pharmacokinetic study, were investigated using rabbit as animal model. KEY FINDINGS: Voriconazole-SNEDDS presented a droplet size of 21.353 +/- 0.065 nm, a polydispersity index of 0.123 +/- 0.003, a pH of 7.205 +/- 0.006 and an osmolarity of 342.667 +/- 2.517 mOsmol/l after reconstitution with NaCl 0.9%. Voriconazole-SNEDDS minimum inhibitory concentration (MIC90 ) was similar to the one of marketed formulation for Candida species while it was significantly lower (P < 0.001) for Aspergillus fumigatus. Draize test revealed that Voriconazole-SNEDDS was safe for ocular administration. Voriconazole maximum concentration (5.577 +/- 0.852 microg/ml) from SNEDDS was higher than marketed formulation (Cmax = 4.307 +/- 0.623 microg/ml), and the Tmax was delayed to 2 h. The area under the concentration-time curve value of Voriconazole-SNEDDS was improved by 2.419-fold. CONCLUSION: Our results suggest that SNEDDS is a promising carrier for voriconazole ocular delivery and this encourages further clinical studies.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    0
    Citations
    NaN
    KQI
    []