Calculated and Experimental Low-Energy Conformations of Cyclic Urea HIV Protease Inhibitors

1998 
One important factor influencing the affinity of a flexible ligand for a receptor is the internal strain energy required to attain the bound conformation. Calculation of fully equilibrated ensembles of bound and free ligand and receptor conformations are computationally not possible for most systems of biological interest; therefore, the qualitative evaluation of a novel structure as a potential high-affinity ligand for a given receptor can benefit from taking into account both the bound and unbound (usually aqueous) low-energy geometries of the ligand and the difference in their internal energies. Although many techniques for computationally generating and evaluating the conformational preferences of small molecules are available, there are a limited number of studies of complex organics that compare calculated and experimentally observed conformations. To assess our ability to predict a priori favored conformations of cyclic HIV protease (HIV-1 PR) inhibitors, conformational minima for nine 4,7-bis(phen...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    39
    Citations
    NaN
    KQI
    []