Mechanical response of transient telechelic networks with many-part stickers

2017 
A central question in soft matter is understanding how several individual, weak bonds act together to produce collective interactions. Here, gel-forming telechelic polymers with multiple stickers at each chain end are studied through Brownian dynamics simulations to understand how collective interaction of the bonds affects mechanical response of the gels. These polymers are modeled as finitely extensible dumbbells using an explicit tau-leap algorithm and the binding energy of these associations was kept constant regardless of the number of stickers. The addition of multiple bonds to the associating ends of telechelic polymers increases or decreases the network relaxation time depending on the relative kinetics of association but increases both shear stress and extensional viscosity. The relationship between the rate of association and the Rouse time of dangling chains results in two different regimes for the equilibrium stress relaxation of associating physical networks. In case I, a dissociated dangling...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    79
    References
    4
    Citations
    NaN
    KQI
    []