Detecting Pitch and Yaw and In-flight Damping with Optical Chronographs

2012 
Abstract : A bullet can leave the barrel with a significant yaw angle (or tip off rate leading to pitch and yaw) and then pitch and yaw in an oscillatory manner as the peak pitch and yaw angles slowly decrease as the bullet flies downrange. This paper presents an experimental design for detecting the in-flight damping and test results which support the theory of damping of pitch and yaw. Three chronographs were employed simultaneously to determine drag coefficients of bullets over near and far intervals 50 yards long for bullets fired at Mach 1.4 to Mach 3.1. Drag coefficients for the complete 100 yard interval were used at different Mach numbers to establish the curve of drag coefficient vs. Mach number. Since the drag coefficients will decrease as pitch and yaw are damped, the theory of bullets going to sleep predicts that the drag coefficients for the near 50 yard interval will be above the curve and the drag coefficients for the far 50 yard interval will be below the curve.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    4
    Citations
    NaN
    KQI
    []