A novel variant of NPPC causes abnormal post-translational cleavage: A candidate gene for premature ovarian insufficiency

2022 
Abstract Objective Premature ovarian insufficiency (POI) is a clinical disease that is diagnosed by the loss of ovarian function before the age of 40. Despite recent progress in molecular diagnosis, the genetic etiology of POI is not well established. The aim of this study is to reveal pathogenic genetic variants involved in POI. Study design and main outcome measures To reveal pathogenic genetic variants involved in POI, whole exome sequencing was performed in nonconsanguineous family members with POI. Constitutional variants were filtered against population databases and a missense mutation of natriuretic peptide C (NPPC) (c.131A>G, p.Q44R) was selected as a convincing candidate mutation among 14 heterozygous mutant alleles in 13 genes. Results The wild-type NPPC and mutant NPPC (NPPC131A>G) were expressed in HeLa cells, and cells expressing NPPC131A>G secreted unique peptides. The ProP 1.0 Server, a neural network prediction tool, predicted the presence of a cleavage site at the substituted arginine residue (p.Q44R) of NPPC. The molecular weight of predicted cleaved peptides processed from mutant NPPC precursor corresponded to that of the actual mutant peptide. The cGMP synthetic activity of NPR2-expressing cells was significantly decreased by interaction with the mutant NPPC peptide compared with wild-type NPPC. Conclusions The peptide generated by a rare mutation of NPPC might influence paracrine C-type natriuretic peptide (CNP)-mediated preantral follicle development and/or sustain meiotic arrest in oocytes. We therefore suggest that a mutation of the NPPC gene is involved in the pathogenesis of POI.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    0
    Citations
    NaN
    KQI
    []