Abstract 19142: Short Telomeres Induce p53 and Autophagy to Regulate Cardiac Progenitor Cell Fate

2017 
Aging severely limits myocardial regeneration. Delineating the impact of age-associated factors such as short telomeres is critical to enhance the regenerative potential of cardiac progenitor cells (CPCs). We hypothesize that short telomeres induce autophagy and elicit the age-associated change in cardiac progenitor cell fate. We compared mouse strains with different telomere lengths (TL) for phenotypic characteristics of aging and also isolated CPCs from them. Naturally occurring wild mouse strain Mus musculus castaneus (CAST) possessing short telomeres (TL:18Kb) exhibits early cardiac aging with diastolic dysfunction, hypertrophy, fibrosis and increase in senescence markers p53 and p16, as compared to common lab strains FVB (TL:75Kb) and C57 (TL:50Kb). CAST CPCs with short TLs have altered cell fate as characterized by slower proliferation (p<0.01); increased senescence (p<0.05) and lineage commitment marker expression (p<0.05); as well as loss of quiescence marker expression. Consistent findings of alt...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []