Highly Efficient and Stable Bimetallic AuPd over La-Doped Ca–Mg–Al Layered Double Hydroxide for Base-Free Aerobic Oxidation of 5-Hydroxymethylfurfural in Water

2017 
As a promising renewable alternative to the production of petroleum-derived chemicals and energy, biomass transformation is attracting increasing attention in terms of green chemical processes and sustainable development. Specifically, selective aerobic oxidation of cellulose-derived 5-hydroxymethylfurfural (HMF) into high value-added 2,5-furandicarboxylic acid (FDCA) is regarded as one of the most attractive biomass transformations due to a wide range of its application prospects. Herein, we report the synthesis of a highly efficient and stable bimetallic AuPd nanocatalyst over the La-doped Ca–Mg–Al layered double hydroxide (La-CaMgAl-LDH) support for base-free aerobic oxidation of HMF to FDCA in water, which makes the biomass-based chemical process green and cost effective. Under optimized reaction conditions, the yield of FDCA can reach above 99%. Such encouraging performance of the catalyst is believed to be correlated with both the higher surface basicity of La-CaMgAl-LDH support and the synergy betw...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    60
    References
    51
    Citations
    NaN
    KQI
    []