WFIRST Phase B HLC occulter mask baselining and testbed WFC performance validation

2019 
Occulter mask fabrication for Hybrid Lyot Coronagraph (HLC) at JPL is a relatively mature technology as past successful testbed demonstrations can attest. Nevertheless, as NASA’s WFIRST mission moved into Phase B, new mask design space and fabrication process were explored for new requirements and for better performances for the CoronaGraph Instrument (CGI). To minimize the risks associated with the new explorations, CGI modeling team is tasked with assessing the viability of new designs. In this paper, we describe our HLC modeling effort and results, which identified the potential risks with early exploratory designs and modified fabrication processes. As a result, the traditional (proven) style design is kept for risk aversion. Along the way a standard procedure has been developed for systematic mask evaluation, mask baselining, and general flight performance prediction. In the second part, we describe our model validation effort for the chosen baseline mask’s testbed performance. The focus of the testbed demonstration is to address a major concern related to the CGI’s limited time for wavefront control (WFC) in flight. It includes two stages of WFC: ground seed generation WFC, and (simulated) in-orbit commissioning phase WFC. Good agreements have been achieved in both stages of WFC which affirms that the CGI is capable of digging a dark hole that meets raw contrast requirement within the required time allocation. It also represents a significant improvement in our HLC WFC modeling for an as-built real system.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    3
    Citations
    NaN
    KQI
    []