A Study on the Electrochemical Properties of Porous Carbon Electrode according to the Organic Solvent Contents

2008 
In order to increase the surface area of electrodes for electrosorption, porous carbon electrodes were fabricated by a wet phase inversion method. A carbon slurry consisting of a mixture of activated carbon powder (ACP), polyvinylidene fluoride (PVdF), and N-methyl-2-pyrrolidone (NMP) as a solvent was cast directly on a graphite sheet. The cast film was then immersed in pure water for phase inversion. The physical and electrochemical properties of the electrodes were investigated using scanning electron microscopy (SEM), porosimetry, and cyclic voltammetry. The SEM images verified that the pores of various sizes were formed uniformly on the electrode surface. The average pore sizes determined for the electrodes fabricated with various NMP contents ranged from 64.2 to 82.4 nm and the size increased as the NMP content increased. All of the voltammograms showed a typical behavior of charging and discharging characteristic at the electric double layer. The electrical capacitance ranged from 3.88 to 5.87 F/cm2 depending on the NMP contents, and the electrical capacitance increased as the solvent content decreased. The experimental results showed that the solvent content is an important variable controlling pore size and ultimately the capacitance of the electrode.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    3
    References
    0
    Citations
    NaN
    KQI
    []