Quantitative measurement of hard X-ray spectra from laser-driven fast ignition plasma

2013 
Abstract Absolute K α line spectroscopy is proposed for studying laser–plasma interactions taking place in the Au cone-guided fast ignition targets. X-ray spectra ranging from 20 to 100 keV were quantitatively measured with a Laue spectrometer composed of a cylindrically curved crystal and a filter-absorption method for Bremsstrahlung continuum emission. The absolute sensitivities of the Laue spectrometer systems were calibrated using pre-characterized laser-produced X-ray sources and radioisotopes. The integrated reflectivity for the crystal is in good agreement with predictions by an X-ray diffraction code. The energy transfer efficiency from incident laser beams to hot electrons, as the energy transfer mechanism, is derived from this work. The absolute yield of Au and Ta K α lines were measured in the fast ignition experimental campaign performed at Institute of Laser Engineering, Osaka University. Applying the hot electron spectrum information from electron spectrometer and scaling laws, the energy transfer efficiency from the incident LFEX, a kJ-class PW laser, to hot electrons was derived for the first time.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    4
    Citations
    NaN
    KQI
    []