A Stopping Criterion for the Training Process of the Specific Signal Generator
2021
Mathematical description of a complex signal is very important in engineering but nearly impossible in many occasions. The emergence of the Generative Adversarial Network (GAN) shows the possibility to train a single neural network to be a Specific Signal Generator (SSG), which is only controlled by a random vector with several elements. However, there is no explicit criterion for the GAN training process to stop, and in real applications the training always stops after a certain big iteration. In this paper, a serious issue was discussed during the process to use GAN as a SSG. And, an explicit criterion for the GAN as a SSG to stop the training process were proposed. Several experiments were carried out to illustrate the issues mentioned above and the effectiveness of the stopping criterion proposed in this paper.
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
12
References
1
Citations
NaN
KQI