Ent-kaurane diterpenes isolated from n-hexane extract of Baccharis sphenophylla by bioactivity-guided fractionation target the acidocalcisomes in Trypanosoma cruzi

2021 
ABSTRACT Background In the present work the bioactivity-guided fractionation of n-hexane extract from aerial parts of Baccharis sphenophylla (Asteraceae) against trypomastigote forms of Trypanosoma cruzi was performed. Purpose To evaluate the antitrypanosomal potential of diterpenes ent-kaurenoic (1), grandifloric (2). and 15β-tiglinoyloxy-ent-kaurenoic (3) acids, isolated from n-hexane extract from aerial parts of B. sphenophylla, and elucidate their mechanism of action against T. cruzi. Methods/Study design n-Hexane and MeOH extracts from aerial parts of B. sphenophylla were prepared and caused, respectively, 100% and 50% of death of trypomastigote forms of T. cruzi. Based on these results, the n-hexane extract was subjected to bioactivity-guided fractionation procedures to afford three related ent-kaurane diterpenoids (1 – 3). Based on spectrofluorometric assays and flow cytometry analysis, the mechanism of action of compounds 1 and 3 was investigated. Results Compounds 1 and 3, isolated from n-hexane extract from aerial parts of B. sphenophylla, showed potent activity against parasites with EC50 values of 10.6 μM (SI > 18.8) and 2.4 μM (SI = 34.8), respectively. On the other hand, compound 2 was inactive against trypomastigotes. In mechanism of action studies using the fluorescent probe SYTOX Green, the plasma membrane permeability was unaltered after treatment with compounds 1 and 3, but compound 1 induced a depolarization of the plasma membrane electric potential (ΔΨp). No substantial alterations were observed in the mitochondria after treatment with compound 3, but a transient hyperpolarization of the mitochondrial membrane potential (ΔΨm) by compound 1. Despite the increased ATP levels induced by compounds 1 and 3, no alterations of ROS and Ca2+ levels were registered. However, both compounds promoted a time-dependent alkalinization of the acidocalcisomes, probably contributing to an osmotic imbalance of the cell. In silico physicochemical studies of compounds 1 – 3 suggested that lipophilicity and molecular complexity may play an important role in the antitrypanosomal activity. Moreover, no pan-assay interference compounds (PAINS) alerts were detected for compounds 1 – 3. Conclusion Obtained data indicated that the isolated ent-kaurane diterpenes from n-hexane extract from aerial parts of B. sphenophylla, especially compound 3, could be considered interesting prototypes for further modifications aiming the discovery of new hits against T. cruzi.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    0
    Citations
    NaN
    KQI
    []