Electrochemical synthesis of multi-armed CuO nanoparticles and their remarkable bactericidal potential against waterborne bacteria
2012
Copper (II) oxide multi-armed nanoparticles composed of 500–1000 nm long radiating nanospicules with 100–200 nm width near the base and 50–100 nm width at the tapered ends and ~25 nm thickness were synthesized by electrochemical deposition in the presence of an oxidant followed by calcination at 150 °C. The nanoparticles were characterized using SEM/EDX for morphology and composition, Raman spectroscopy for compound identification, and broth culture method for antibacterial efficacy. The CuO nanoparticles have shown remarkable bactericidal efficacy against Gram-positive and -negative waterborne disease causing bacteria like Escherichia coli, Salmonella typhi, staphylococcus aureus and Bacillus subtilis. E. coli has been chosen as representative species for waterborne disease causing bacteria. In antibacterial tests 500 μg/mL nano CuO killed 3 × 108 CFU/mL E. coli bacteria within 4 h of exposure. Moreover, 8.3 × 106 CFU/mL E. coli were killed by 100 and 10 μg/mL nano CuO within 15 min and 4 h of exposure, respectively. Antibacterial activity of nano CuO has been found many-fold compared with commercial bulk CuO. The fate of nanoparticles after antibacterial test has also been studied. The synthesized CuO nanoparticles are expected to have potential antibacterial applications in water purification and in paints and coatings used on frequently touched surfaces and fabrics in hospital settings.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
34
References
37
Citations
NaN
KQI