Subduction factory in an ampoule: Experiments on sediment–peridotite interaction under temperature gradient conditions

2018 
Abstract To better understand processes above subducted oceanic slabs, we have undertaken experiments with juxtaposed sediment and peridotite layers at pressures of 7.5 and 10.5 GPa at a controlled temperature gradient from ∼100 to ∼500 °C per a sample length of ∼3 mm. The sediment starting material contains H 2 O (6.9 wt%) and CO 2 (5.9 wt%) and has a major-element composition similar to GLOSS (Plank and Langmuir, 1998) doped with trace elements at 10–100 ppm levels. Several experiments were conducted with ∼0.5 wt% Cl or F. The peridotite layer is composed of natural olivine (66 wt%), orthopyroxene (27 wt%) and garnet (7 wt%) mixed with ∼15 wt% graphite. Several experimental configurations were investigated, but the “basic” setup has the sediment layer at the bottom in the cold zone (400–1200 °C) overlain by peridotite at 900–1500 °C. The temperature distribution was determined by two thermocouples and orthopyroxene–garnet thermometry. Features common to many experiments are (1) the development of multiple layers of various lithologies and a pool of hydrous silicate or carbonate–silicate melt in the hottest part of the capsule; (2) replacement of olivine by orthopyroxene in the metaperidotite; (3) preservation and growth of garnet and local development of magnesite in the metaperidotite layer; (4) enrichment in garnet within the metasediment layer at the contact with the metaperidotite; (5) formation of a clinopyroxene–garnet assemblage at the bottom (the coldest part); (6) presence of K-bearing phases (phlogopite or phengite) and carbonates in the metasediment layer only at temperatures 2 compared to the starting composition, and the sediment gains MgO, FeO and Cr 2 O 3 . Potassium is fully extracted into the melt, while Na and Ca are largely retained in the coldest part of the metasediment layer in clinopyroxene, Ca-rich garnet and aragonite. The melt is a product of interaction between partial melt or fluid from the sediment and peridotite. It has a silico-carbonatite composition with variable SiO 2 , MgO, FeO and CaO contents and low Al 2 O 3 . The addition of Cl has almost no effect on element distribution, whereas the addition of F results in the appearance of humite-group minerals containing significant amounts of Ti. Trace-element distribution is controlled by pressure, temperature and mineral assemblages. At low temperatures in the sediment layer (
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    76
    References
    14
    Citations
    NaN
    KQI
    []