Early and Late Events Induced by PolyQ-expanded Proteins IDENTIFICATION OF A COMMON PATHOGENIC PROPERTY OF POLYQ-EXPANDED PROTEINS

2011 
To find a common pathogenetic trait induced by polyQ-expanded proteins, we have used a conditional expression system in PC12 cells to tune the expression of these proteins and analyze the early and late consequences of their expression. We find that expression for 3 h of a polyQ-expanded protein stimulates cellular reactive oxygen species (ROS) levels and significantly reduces the mitochondrial electrochemical gradient. 24–36 h later, ROS induce DNA damage and activation of the checkpoint kinase, ATM. DNA damage signatures are reversible and persist as long as polyQ-expanded proteins are expressed. Transcription of neural and stress response genes is down-regulated in these cells. Selective inhibition of ATM or histone deacetylase rescues transcription and restores the expression of silenced genes. Eventually, after 1 week, the expression of polyQ-expanded protein also induces endoplasmic reticulum stress. As to the primary mechanism responsible for ROS generation, we find that polyQ-expanded proteins, including native Ataxin-2 and Huntingtin, are selectively sequestered in the lipid raft membrane compartment and interact with gp91, the membrane NADPH-oxidase subunit. Selective inhibition of NADPH oxidase or silencing of H-Ras signaling dissolves the aggregates and eliminates DNA damage. We suggest that targeting of the polyQ-expanded proteins to the lipid rafts activates the resident NADPH oxidase. This triggers a signal linking H-Ras, ROS, and ERK1/2 that maintains and propagates the ROS wave to the nucleus. This mechanism may represent the common pathogenetic signature of all polyQ-expanded proteins independently of the specific context or the function of the native wild type protein.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    56
    Citations
    NaN
    KQI
    []