Measuring critical stress for shear failure of interfacial regions in coating/interlayer/substrate systems through a micro-pillar testing protocol

2017 
Mechanical integrity of the interfacial region between ceramic coatings and substrates is critical to high performance coated mechanical components and manufacturing tools. Mechanical failure of the coating/substrate interfacial region often leads to catastrophic failure of the coated system as a whole. Despite extensive research over the past two decades, quantitative assessment of the mechanical response of coating/substrate interfacial regions remains a challenge. The lack of reliable protocols for measuring the mechanical response of coating/substrate interfacial regions quantitatively hampers the understanding of key factors controlling the mechanical integrity of coating/substrate interfaces. In this paper, we describe a new micro-pillar testing protocol for quantitative measurement of critical stresses for inducing shear failure of interfacial regions in ceramic-coating/metal-adhesion-layer/substrate systems. We observe significant differences in the critical stress for shear failure of interfacial regions in CrN/Cu/Si, CrN/Cr/Si, and CrN/Ti/Si systems. The present testing protocol has general applicability to a wide range of coating/interlayer/substrate systems.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    18
    Citations
    NaN
    KQI
    []