Doubly Multiplicative Error Models with Long- and Short-run Components
2020
We suggest the Doubly Multiplicative Error class of models (DMEM) for modeling and forecasting realized volatility, which combines two components accommodating low-, respectively, high-frequency features in the data. We derive the theoretical properties of the Maximum Likelihood and Generalized Method of Moments estimators. Two such models are then proposed, the Component-MEM, which uses daily data for both components, and the MEM-MIDAS, which exploits the logic of MIxed-DAta Sampling (MIDAS). The empirical application involves the S&P 500, NASDAQ, FTSE 100 and Hang Seng indices: irrespective of the market, both DMEM's outperform the HAR and other relevant GARCH-type models.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
43
References
0
Citations
NaN
KQI