The contribution of flux transfer events to Mercury's Dungey cycle

2019 
Bursty dayside reconnection plays a proportionally larger role in the driving of Mercury's magnetosphere than it does at Earth. Individual bursts of reconnection, called flux transfer events (FTEs), are thought to open up to 5% of Mercury's polar cap; coupled with the much higher repetition rate of FTEs at Mercury and the short Dungey cycle timescale, this makes FTEs the major driver of Mercury's magnetosphere. However, comparison between spacecraft and ionospheric observations at Earth suggests that the terrestrial contribution of FTEs may have been severely underestimated, by making implicit assumptions about FTE structure. In this study, we consider the implications of removing these assumptions at Mercury; by considering FTE mechanisms based on longer reconnection lines, we find that the contribution of FTEs to Mercury's Dungey cycle could be 5 times greater than previously thought and that FTEs may be able to provide sufficient flux transport to drive Mercury's substorm cycle.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    3
    Citations
    NaN
    KQI
    []