Effect of accumulation rate on water stable isotopes of near‐surface snow in inland Antarctica

2014 
[1] Postdepositional changes in water stable isotopes in polar firn were investigated at three sites characterized by different accumulation rates along the East Antarctic ice divide near Dome Fuji. Water stable isotopes, major ion concentrations, and tritium contents of three 2–4 m deep pits were measured at high resolution (2 cm). Temporally, the snow pits cover the past 50 years with snow accumulation rates in the range of 29–41 kg m−2 a−1 around Dome Fuji. Oxygen isotopic profiles in the three pits do not show annual fluctuations, but instead exhibit multiyear cycles. These multiyear cycles are lower in frequency at Dome Fuji as compared with the other two sites. Peaks of water stable isotopes in the multiyear cycles correspond to some ion concentration minima in the pits, although such relationships are not observed in coastal regions. We propose that the extremely low accumulation environment keeps the snow layer at the near surface, which result in postdepositional modifications of isotopic signals by processes such as ventilation and vapor condensation-sublimation. We estimate that oxygen isotopic ratios could be modified by >10‰ and that the original seasonal cycle could be completely overprinted under the accumulation conditions at Dome Fuji. Moreover, stake measurements at Dome Fuji suggest that the large variability in snow accumulation rate is the cause of the multiyear cycles.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    57
    References
    34
    Citations
    NaN
    KQI
    []