SiO2@MgO nanoparticles templated mesoporous carbon with rich electro-active oxygenic functionalities and enhanced supercapacitive performances

2017 
Abstract As a member of carbon-based materials, ordered mesoporous carbon (OMC) still suffers from poor capacity for supercapacitive applications. Functionalization the skeleton with pseudocapacitive functionalities is an efficient way to enhance the capacity of OMCs. Herein, a designed SiO 2 @MgO nanoparticle with uniform diameters was employed as template towards the synthesis of pseudocapacitive oxygen functionalized OMC. The obtained carbons possess ordered mesoporous structure, large surface area, and rich pseudocapacitive oxygen species. As electrode for supercapacitor in 1.0 M H 2 SO 4 , the SiO 2 @MgO templated OMC achieves higher capacitance (257 F/g) than pure SiO 2 templated OMC (180 F/g), surfactant templated OMC (152 F/g) and commercial activated carbon (110 F/g) owing to the high pseudocapacitive oxygen functionalities, providing more capacity by reversible Faradaic reaction.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    12
    Citations
    NaN
    KQI
    []