Three‐Dimensional Crustal Architecture Beneath the Sikkim Himalaya and Its Relationship to Active Deformation
2017
We study the 3-D variation of the crustal structure of the Sikkim Himalaya using broadband seismological data acquired from a focused network of seven stations spanning the Lesser, Higher, and Tethyan Himalaya. Common conversion point stacking of receiver functions recorded along an across-strike profile of the Himalaya reveals first-order northward dip on the Main Himalayan Thrust (MHT), a midcrustal discontinuity and the Moho, along with higher-order lateral variations. Three-dimensional images generated from joint inversion of receiver functions and surface wave dispersions show that the MHT has a ramp-flat-ramp geometry. The ramps are located beneath the Lesser Himalaya and the Tethyan Himalaya with dips of ∼7∘ and ∼15∘, respectively, connected by flat segments. The ramp beneath the Lesser Himalaya forms a dome structure, upwarping the thrust sheets associated with the Peling and Main Central Thrust. The erosional surface of this dome forms the arcuate geometry of thrusts observed in the Lesser Himalaya. The thickness of the underthrust Indian crust is 35–42 km and has an average VS of 3.63 km/s, similar to that of the Indian Shield crust. The Moho also has dome-like structures separated by elongated, deeper sections trending NW-SE. These are intersected by steeply dipping transverse low-velocity zones, oblique to the strike of the Himalaya. We conjecture that these low-velocity zones are the dextral-strike slip faults known to be active beneath the Sikkim Himalaya. The observed alternate shallow and deep segments of the Moho must be a consequence of several cycles of strike-slip displacement on these transverse faults.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
42
References
9
Citations
NaN
KQI