Germanium MOSFET Devices: Advances in Materials Understanding, Process Development, and Electrical Performance

2008 
7cm 2 ; however, only a 2 times reduction in junction leakage is observed and no benefit is seen in on-state current. Ge wet etch rates are reported in a variety of acidic, basic, oxidizing, and organic solutions, and modifications of the RCA clean suitable for Ge are discussed. Thin, strained epi-Si is examined as a passivation of the Ge/gate dielectric interface, with an optimized thickness found at 6 monolayers. Dopant species are overviewed. P and As halos are compared, with better short channel control observed for As. Area leakage currents are presented for p/n diodes, with the n-doping level varied over the range relevant for pMOS. Germanide options are discussed, with NiGe showing the most promise. A defect mode for NiGe is reported, along with a fix involving two anneal steps. Finally, the benefit of an end-of-process H2 anneal for device performance is shown.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    203
    Citations
    NaN
    KQI
    []