BLT1 signaling in epithelial cells mediates allergic sensitization via promotion of IL‐33 production

2018 
BACKGROUND: Epithelial cells (ECs) play a crucial role in allergic sensitization to inhaled protease allergens by instructing type 2 innate lymphoid cells (ILC2) and dendritic cells (DCs) via release of pro-type 2 cytokines, particularly interleukin-33 (IL-33). Leukotriene B4 (LTB4) is a well-known leukocyte chemoattractant via engagement of its receptor 1 (BLT1). However, the role of LTB4-BLT1 axis in allergic sensitization via activation of ECs is still unknown. METHODS: We evaluated the effect of LTB4-BLT1 axis on IL-33 expression and ILC2 activation in vivo and in vitro. Chimeric mice were established to evaluate the contribution of BLT1 expression in nonimmune cell to allergic sensitization. RESULTS: Genetical or pharmacological interruption of LTB4-BLT1 axis during sensitization phase markedly reduced papain-induced IL-33 expression, decreased ILC2 activation and DC migration, thereby impairing the priming of allergic Th2 responses. Furthermore, papain inhalation induced a rapid release of LTB4 preceding IL-33, and intranasal administration of LTB4 to naive WT mice significantly increased IL-33 expression and ILC2 activation in lung, which was absent in Il33-/- or Ltb4r1-/- mice. Furthermore, BLT1 was expressed in primary mouse ECs or normal human bronchial ECs (NHBE), and papain induced LTB4 release by NHBE, which in turn amplified IL-33 production dependent on Akt activation via BLT1. Consequently, bone marrow chimeric mice lacking BLT1 in radio-resistant structural cells failed to develop allergic lung inflammation to papain. CONCLUSION: Our study reveals a functional role of LTB4-BLT1 axis in nonimmune cells, most likely lung ECs, in controlling allergic sensitization as an upstream regulator of IL-33.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    18
    Citations
    NaN
    KQI
    []