Effects of Correlated and Uncorrelated Gamma Rays on Neutron Multiplicity Counting

2017 
Neutron multiplicity counting relies on time correlation between neutron signals to assay the fissile mass, ( $\alpha $ ,n) to spontaneous fission neutron ratio, and neutron self-multiplication of samples. Gamma-ray sensitive neutron multiplicity counters may misidentify gamma rays as neutrons and therefore miscalculate sample characteristics. Time correlated and uncorrelated gamma-ray-like signals were added into gamma-ray free neutron multiplicity counter data to examine the effects of gamma-ray signals being misidentified as neutron signals on assays. Multiplicity counter measurements with and without gamma-ray-like signals were compared to determine the assay error associated with gamma-ray-like signals at various gamma-ray and neutron rates. Correlated and uncorrelated gamma-ray signals each produced consistent but different measurement errors. Correlated gamma-ray signals most strongly led to fissile mass overestimates, whereas uncorrelated gamma-ray signals most strongly lead to ( $\alpha $ ,n) neutron overestimates. Accounting for the effects of gamma rays on gamma-ray sensitive neutron multiplicity counters may allow these effects to be compensated for, thus mitigating the assay error associated with misidentified gamma rays.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    5
    References
    2
    Citations
    NaN
    KQI
    []