Urban Air Pollution May Enhance COVID-19 Case-Fatality and Mortality Rates in the United States

2020 
Abstract Background The novel human coronavirus disease 2019 (COVID-19) pandemic has claimed more than 600,000 lives worldwide, causing tremendous public health, social, and economic damages. While the risk factors of COVID-19 are still under investigation, environmental factors, such as urban air pollution, may play an important role in increasing population susceptibility to COVID-19 pathogenesis. Methods We conducted a cross-sectional nationwide study using zero-inflated negative binomial models to estimate the association between long-term (2010-2016) county-level exposures to NO2, PM2.5 and O3 and county-level COVID-19 case-fatality and mortality rates in the US. We used both single and multipollutant models and controlled for spatial trends and a comprehensive set of potential confounders, including state-level test positive rate, county-level healthcare capacity, phase-of-epidemic, population mobility, population density, sociodemographics, socioeconomic status, race and ethnicity, behavioral risk factors, and meteorology. Results 3,659,828 COVID-19 cases and 138,552 deaths were reported in 3,076 US counties from January 22, 2020 to July 17, 2020, with an overall observed case-fatality rate of 3.8%. County-level average NO2 concentrations were positively associated with both COVID-19 case-fatality rate and mortality rate in single-, bi-, and tri-pollutant models. When adjusted for co-pollutants, per inter-quartile range (IQR) increase in NO2 (4.6 ppb), COVID-19 case-fatality rate and mortality rate were associated with an increase of 11.3% (95% CI 4.9% to 18.2%) and 16.2% (95% CI 8.7% to 24.0%), respectively. We did not observe significant associations between COVID-19 case-fatality rate and long-term exposure to PM2.5 or O3, although per IQR increase in PM2.5 (2.6 ug/m3) was marginally associated with 14.9% (95% CI: 0.0% to 31.9%) increase in COVID-19 mortality rate when adjusted for co-pollutants. Discussion Long-term exposure to NO2, which largely arises from urban combustion sources such as traffic, may enhance susceptibility to severe COVID-19 outcomes, independent of long-term PM2.5 and O3 exposure. The results support targeted public health actions to protect residents from COVID-19 in heavily polluted regions with historically high NO2 levels. Continuation of current efforts to lower traffic emissions and ambient air pollution may be an important component of reducing population-level risk of COVID-19 case-fatality and mortality.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    108
    Citations
    NaN
    KQI
    []