Multiagent Minimum Risk Path Intrusion Strategy with Computational Geometry

2021 
In wireless sensor networks (WSNs), inefficient coverage does affect the quality of service (QoS), which the minimum exposure path (MEP) is traditionally used to handle. But intelligent mobile devices are generally of limited computation capability, local storage, and energy. Present methods cannot meet the demand of multiple target intrusion, lacking the consideration of energy consumption. Based on the Voronoi diagram in computational geometry, this paper proposed an invasion strategy of minimum risk path (MRP) to such a question. MRP is the path considered both the exposure of the moving target and energy consumption. Federated learning is introduced to figure out how to find the MRP, expressed as . The value of can measure the success of an invasion. At the time when a single smart mobile device invades, horizontal federated learning is taken to partition the path feature, and a single target feature federated (SPF) algorithm is for calculating the MRP. Moreover, for multi smart mobile device invasion, it has imported the time variable. Vertical federated learning can partition the feature of multipath data, and the multi-target feature federated (MFF) algorithm is for solving the multipath MRP dynamically. The experimental results show that the SPF and MFF have the dominant advantage over traditional computational performance and time. It primarily applies the complex conditions of a massive amount of sensor nodes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    1
    Citations
    NaN
    KQI
    []