Ordered mesoporous BaCO 3 /C-catalyzed synthesis of glycerol carbonate from glycerol and dimethyl carbonate

2015 
BaCO3/C composites were synthesized by a multi-component co-assembly method combined with a carbonization process using phenolic resol as carbon source, barium nitrate as barium precursor, and triblock copolymer Pluronic F127 as template. The synthesized materials were characterized by X-ray diffraction, transmission electron microscopy, N2 physical adsorption, thermogravimetric analysis, and temperature-programmed desorption of CO2. When BaCO3 contents were increased from 9.1 wt% to 44.7 wt%, pore size increased from 3.1 to 4.3 nm and the BET (Brunauer-Emmett-Teller) surface area initially increased to a maximum value of 390 m2 g−1 (at a BaCO3 content of 18.5 wt%) before subsequently decreasing. BaCO3 was well dispersed in the amorphous carbon framework, and no phase separation was observed. The mesoporous Ba-CO3/C composites exhibited high catalytic activities toward the transesterification of glycerol and dimethyl carbonate into glycerol carbonate. A glycerol conversion of 97.8% and a glycerol carbonate selectivity of 98.5% were obtained under the optimized reaction conditions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    56
    References
    15
    Citations
    NaN
    KQI
    []